This study provides a detailed spatiotemporal analysis of the impacts of early wildfires occurring between February 26 and March 16, 2024, in North America, with a focus on the localities of Stinnett (35.82°N, -101.44°W) and Canadian, TX (35.91°N, -100.38°W). Utilizing data from NetCDF files (v10m, u10m, AOD500nm, t2m, coplev, comlev), the analysis employs the xarray library to process meteorological and atmospheric variables, including aerosol optical depth (AOD at 550 nm), 2-meter temperature (converted to °F), carbon monoxide (CO) at 1000 hPa and model level 1 (in ppb), and 10-meter wind components (u10, v10). Visualizations, created using matplotlib and cartopy, include spatial maps of daily averages of AOD, temperature, and CO, overlaid with wind vectors to illustrate their role in pollutant dispersion. Time series analyses reveal the daily evolution of these variables for both localities, highlighting significant AOD peaks in Stinnett, indicative of smoke plume passage. Hourly heatmaps confirm the immediate impact of wildfires on air quality, showing a marked increase in AOD within hours. Wind rose diagrams, generated for each locality, quantify the frequency and intensity of winds, emphasizing their influence on pollutant spread. Finally, a pixel-by-pixel Pearson correlation analysis between AOD and CO reveals a strong positive relationship (R close to +1) in affected areas, confirming the common origin of aerosols and CO from biomass burning. These findings, contextualized within an extreme meteorological event characterized by high temperatures and dry conditions, underscore the complex interactions between meteorological and atmospheric dynamics, with implications for air quality monitoring and environmental crisis management in North America.
馃幆 The detailed methodology and results can be accessed through this link:
馃憠Click here now! :https://github.com/abdibasidadan
Abdi-Basid ADAN, 2025
The Abdi-Basid Courses Institute |